Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus.
نویسندگان
چکیده
BACKGROUND Diabetes mellitus predisposes to thrombotic and proliferative vascular remodeling, to which thrombin contributes via activation of protease-activated receptor (PAR) 1. However, the use of PAR-1 inhibitors to suppress remodeling may be limited by severe bleeding. We recently reported upregulation of an additional thrombin receptor, PAR-4, in human vascular smooth muscle cells exposed to high glucose and have now examined PAR-4 as a novel mediator linking hyperglycemia, hypercoagulation, and vascular remodeling in diabetes mellitus. METHODS AND RESULTS PAR-4 expression was increased in carotid atherectomies and saphenous vein specimens from diabetic versus nondiabetic patients and in aorta and carotid arteries from streptozotocin-diabetic versus nondiabetic C57BL/6 mice. Vascular PAR-1 mRNA was not increased in diabetic mice. Ligated carotid arteries from diabetic mice developed more extensive neointimal hyperplasia and showed greater proliferation than arteries from nondiabetic mice. The augmented remodeling response was absent in diabetic mice deficient in PAR-4. At the cellular level, PAR-4 expression was controlled via the mRNA stabilizing actions of human antigen R, which accounted for the stimulatory actions of high glucose, angiotensin II, and H2O2 on PAR-4 expression, whereas cicaprost via protein kinase A activation counteracted this effect. CONCLUSIONS PAR-4 appears to play a hitherto unsuspected role in diabetic vasculopathy. The development of PAR-4 inhibitors might serve to limit mainly proliferative processes in restenosis-prone diabetic patients, particularly those patients in whom severe bleeding attributed to selective PAR-1 blockade or complete thrombin inhibition must be avoided or those who do not require anticoagulation.
منابع مشابه
Thrombin stimulates insulin secretion via protease-activated receptor-3
The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes ('module') including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encode...
متن کاملVorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease
INTRODUCTION Despite the current standard of care, patients with cardiovascular disease remain at a high risk for recurrent events. Inhibition of thrombin-mediated platelet activation through protease-activated receptor-1 antagonism may provide reductions in atherosclerotic disease beyond those achievable with the current standard of care. OBJECTIVE Our primary objective is to evaluate the cl...
متن کاملComparing the Effect of Continuous and Intermittent Exercise Training Regimens on soleus GLUT4, AMPK and Insulin Receptor in Streptozotocin-Induced Diabetic Rats
Background: The impact of continuous and intermittent training on diabetes mellitus condition and its mechanism is not well understood. The aim of the present study was to assess the changes in glucose uptake after 6 weeks of continuous and intermittent exercise training protocols in healthy and streptozotocin (STZ)-induced diabetic rats. Method: Sixty male al...
متن کاملProtease-activated receptors in cardiovascular diseases.
Thrombosis associated with the pathophysiological activation of platelets and vascular cells has brought thrombin and its receptors to the forefront of cardiovascular medicine. Thrombin signaling through the protease-activated receptors (PARs) has been shown to influence a wide range of physiological responses including platelet activation, intimal hyperplasia, inflammation, and maintenance of ...
متن کاملCharacterization of thrombin-bound dabigatran effects on protease-activated receptor-1 expression and signaling in vitro.
Thrombin, the key effector protease of the coagulation cascade, drives fibrin deposition and activates human platelets through protease-activated receptor-1 (PAR1). These processes are critical to the progression of thrombotic diseases. Thrombin is the main target of anticoagulant therapy, and major efforts have led to the discovery of new oral direct inhibitors of thrombin. Dabigatran is the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 130 19 شماره
صفحات -
تاریخ انتشار 2014